INSTALLATION DE CONTRÔLE MULTITECHNIQUES PAR COURANTS DE FOUCAUTLS, MAGNÉTOSCOPIE ET ULTRASONS

de supports-traverses en fonte à graphite spééroïdal

Introduction

De nombreuses pièces mécaniques subissent des contrôles, au moins par prélèvement, pour s’assurer qu’elles sont aptes à remplir leur fonction. Quand ces pièces font partie du système de liaison au sol d’un véhicule, le contrôle doit alors être individual. Les bras de supports-traverses pour véhicules de tourisme entrent dans cette catégorie. À l’heure actuelle, ces pièces sont principalement obtenues par fonderie d’alliages d’aluminium ou de fonte à graphite sphéroïdal ou, encore par forgeage.

Les alliages d’aluminium permettent de réduire la consommation des véhicules grâce au gain de poids qu’ils apportent. La fonte GS, quant à elle, reste très avantageuse sur le plan économique mais nécessite un contrôle spécifique pour mesurer le “taux de nodularité” du graphite, garant des performances mécaniques recherchées. Outre le “taux de graphite sphéroïdal”, la bonne tenue en service des pièces exige la surveillance individuelle du taux de perlite et l’absence de défauts de surface ou d’accidents de moulage, comme le déport ou la déformation d’un noyau.

Pour ne pas trop grever le coût du contrôle, des solutions originales ont dû être imaginées.

La solution des installations multitechniques

La meilleure solution pour s’assurer par voie non destructive du taux de nodularité (nodularimétrie) d’une pièce en fonte GS consiste à y mesurer la vitesse de propagation d’une onde ultrasonore. Mais d’autres contrôles peuvent être indispensables sur la même pièce. Pour ne pas ralentir la production et donc ne pas augmenter le prix de revient, l’idéal est de pouvoir enchaîner ces contrôles sur une machine unique, ainsi que les tests de laboratoires. L’installation STH 62 est conçue pour réaliser des contrôles rapides. Elle peut aussi, et de façon totalement indépendante, contester simultanément deux types de pièces différents sur une ligne principale et sur une ligne de contrôle magnétoscopique. Pour passer d’un type de pièce à l’autre il suffit de procéder à un changement d’outillage.

L’installation Sondex® STH 62

À l’exception du chargement effectué par un opérateur et de l’observation après magnétisation, qui nécessite un ou deux contrôleurs selon la cadence, cette installation est un système automatisé de contrôles non destructifs multitechniques, dédié au contrôle de pièces en fonte GS (voir figure 2). Outre les supports-traverses, et moyennant quelques aménagements mineurs, elle peut être utilisée pour contrôler des bras de suspension ou des porte-fusées. L’installation STH 62 est conçue pour contrôler des pièces droite et gauche. Elle peut aussi, et de façon totalement indépendante, contrôler simultanément deux types de pièces différents sur la ligne principale et sur la ligne de contrôle magnétoscopique. Pour passer d’un type de pièce à l’autre il suffit de procéder à un changement d’outillage.

Travail en cycle complet (figure 1)
Dans son cycle complet, l’installation effectue les opérations suivantes, dans l’ordre indiqué, après chargement manuel par l’opérateur au point repéré A :
- contrôle de déformation (gauchissement) (point A) ;
- contrôle par courants de Foucault (point B) ;
- contrôle par magnétoscopie « sans contact » pendant le transfert (point 1) ;
- observation des pièces par opérateur (point B) ;
- phase de désaimantation pendant le transfert (point 3) ;
- contrôle par ultrasons (point C), destiné :
 - au contrôle, en trois points, de l’épaisseur de la toile,
 - à la mesure de vitesse de propagation servant au contrôle du taux de nodularité (nodularimétrie) ;
 - marquage des pièces bonnes (point D) ;
 - tri des pièces (point E) et éjection vers l’un des bacs F1 à F4 approprié.
La cadence instantanée de contrôle, lorsque l’ensemble des techniques est utilisé, atteint 300 pièces/heure.

Travail en cycle partiel
En cas de besoin, l’installation peut n’effectuer qu’une partie seulement des contrôles possibles :
- contrôle sans magnétoscopie (points A, B, C, D, E) ;
- contrôle sans magnétoscopie ni nodularimétrie (points A, B, D, E), dans ces deux cas, seule la ligne principale est alors utilisée ;
- contrôle magnétoscopique seul sur la ligne secondaire (points 1 et 2).

Travail en mode simultané
Dans ce mode, l’installation contrôle simultanément et indépendamment un type de pièce aux points A, B, (C), D, E et un autre type de pièce en magnétoscopie, uniquement aux points 1 et 2. Cette souplesse inégalée permet à l’installation de s’adapter aux besoins de la production.

Le contrôle des départs d’usinage
Il précède tous les autres, puisque seules les pièces n’ayant pas subi de déformation lors du démoulage subiront les contrôles non destructifs. Les pièces
droite ou gauche sont mises en place par deposer manuellement sur un support correspondant, puis mises en reference a partir des departs d'usinage et verrouillees en position. Elles sont ensuite montees par un systeme pneumatique vers le plateau supportant les palpeurs mécaniques et la pige. Deux palpeurs controlent les departs d'usinage, tandis qu'une pige verifie le passage de la barre de torsion. Les pieces ayant satisfait au controle de deformation sont cheminées par une table de transfert vers les postes de controle non destructifs, en commençant par le poste de controle par courants de Foucault.

Le controle par courants de Foucault

Ce controle est effectue par une bobine enroulant de 240 mm de diametre a une frequene de 32 Hz. Il a pour but de determiner si la piece est ferritique ou perlitique par definition de fenetres de tri dans le plan d'impedance. Pour etre reconnue "bonne", une piece doit presenter un taux de perlit inferior a 25 %. Le lien entre le taux de perlit et le plan d'impedance est defini a partir de pieces de reference dont le taux de perlit est connu.

La methode retenue pour valider le bon fonctionnement de ce poste est d'effectuer 30 mesures succesives sur une piece de reference avec un intervalle de tolerance de 0,5 %.

Du poste de controle par courants de Foucault, un premier portique manipulateur transfore les pieces vers les postes de controle par magnetoscopie et de desaigntation.

Le controle par magnetoscopie sans contact et la desaigntation

Ce poste est charger de mettre en evidence des defauts de surface tels que criques et voiles d'oxydes. Un plateau support escamotable permet de transférer la piece du premier au second manipulateur sans utiliser le chariot de magnetoscopie sur la ligne principale de controle (controles des departs d'usinage par courants de Foucault et par ultrasons). Lorsqu'il est en service, ce plateau support libere le chariot de magnetoscopie qui peut alors etre utilise pour controle par magnetoscopie uniquement, un autre type de piece de fagon totalement independante.

Dans ce mode de fonctionnement, le poste de magnetoscopie permet une cadence de controle de 120 pieces/heure. La magnetisation est du type dit "sans contact", c'est-a-dire par passage de champs multidirectionnels permettant, en une seule operation, de detecter tous les defauts, quelle que soit leur orientation. Le champ magnetique tangentiel sur la piece est compris entre 3 et 8 kA/m efficaces. L'arrasage, avec une liqueur magnetique a base aqueuse, a lieu pendant l'alignement. La dsaignantation, automatique, est realisee aprés le poste d'observation. L'examen est effectue en temps masque pendant le transfert par un ou deux controleurs sous eclairage UVA.

Le bon fonctionnement du poste de magnetoscopie est valide par trente passages succesifs d'une piece piegee dont tous les pieces doivent etre mis en evidence a chaque passage.

Le controle par ultrasons

A ce poste, on mesure tout d'abord la vitesse sonore, dont la valeur est ensuite utilisee pour estimer le taux de nodularite (voir figure 3) et calculer trois epaisseurs de teste, afin de verifier qu'aucun defaut de deformation de noyau ne s'est produit pendant la coulee (voir figure 2). On appelle "nodularite" le controle par ultrasons du taux de nodularite de pieces en fonte GS par la mesure de la vitesse de propagation du son. Il s'agit donc d'une evaluation indirecte.

Toutes les mesures sont effectuees en technique de immersion a la fréquence de 5 MHz. Le liquide de couplage, de l'eau avec un additif approprié, est filtré a 100 µm. Il est utilise en circuit fermé et son niveau dans la cuve est garanti par débordement.

La vitesse du son dans l'eau n'étant pas constante avec la température, plusieurs mesures de temps de vol, avec et sans piece, entre deux transducteurs montés en vis-à-vis à une distance connue avec precision, sont nécessaires pour éliminer l'influence de ces variations sur les résultats (voir figure 3).

La mesure des épaisseurs de toile, comprises entre 6 et 7 mm, est réalisée de façon classique selon le procédé par écho en mode 2. Les précisions obtenues sont de 10 m/sec en mesure de vitesse et de 0,1 mm en mesure d'épaisseur.

Le poste de marquage

Les pieces bonnes sont marquées individuellement sur le dessus par un perçage de 6 mm de diamètre et de 2 mm de profondeur, afin d'assurer la traçabilité. Ce marquage est visible une fois la pièce montée sur véhicule.

Le poste de tri et d'éjection

En sortie de machine, les pieces sont triées et évacuées vers l'un des quatre conteneurs par un système à goulotte rotative équipé d'une pelle d'éjection. Le tri des pièces est effectué selon trois catégories :
- pièces bonnes, pour lesquelles deux conteneurs, F2 et F3, sont prévus ;
- 1 conteneur en cours de remplissage ;
- 1 conteneur tampon qui permet l'évacuation du conteneur plein et son remplacement par un vide sans arrêté l'installation ;
- pièces non conformes en courants de Foucault, F1 (taux de perlit < 25 %) ;
- pièces non conformes en taux de nodularité et/ou en épaisseur (contrôle US), conteneur F4.

C'est sur le poste de tri E que les pièces sont comptées.

Conclusion

Cette installation est l'aboutissement de vingt ans d'expérience de Sarem dans la réalisation de machines multitechniques. Ce type d'installations, lesquelles exploiteront le plus souvent trois procédés de contrôle non destructif : magnetoscopie, courants de Foucault et ultrasons, permet de gagner un temps précieux pour les opérations de contrôle et d'économiser une main d'œuvre importante pour la manipulation des pièces. Cette caractéristique, ajoutée à la possibilité de travailler en mode simultané, leur permet donc de contribuer de façon significative à l'amélioration de la productivité.